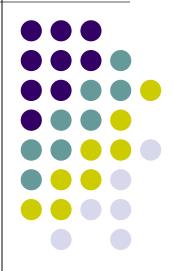
A Heuristic Algorithm for Relaxed Optimal Rule Ordering Problem

Takashi Harada[†], Ken Tanaka[†] and Kenji Mikawa[‡]

[†]Kanagawa University, Japan[‡]Niigata University, Japan



Research Theme

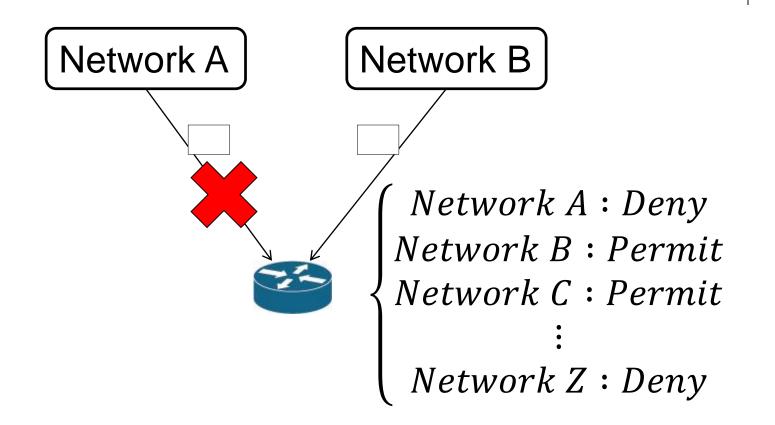
Acceleration of packet filtering

by reordering rules in a rule list

Table of Contents

- Packet Filtering Model
- Optimal Rule Ordering (ORO)
- Relaxed Optimal Rule Ordering (RORO)
- Heuristic algorithm for RORO
- Experiments
- Conclusion and Future Work

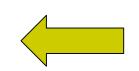
Packet Filtering



Filtering packets according to the policy

Acceleration of Packet Filtering

- Using a special hardware, like TCAM
- Using software-based algorithm
- Reordering rules in a rule list



Reconstructing a rule list

Form of packet and Rule

We regard packet as a bit string of length w.

e.g.
$$w = 4$$
, $p = 0100$

We regard condition of rule as a string on $\{0,1,*\}^w$.

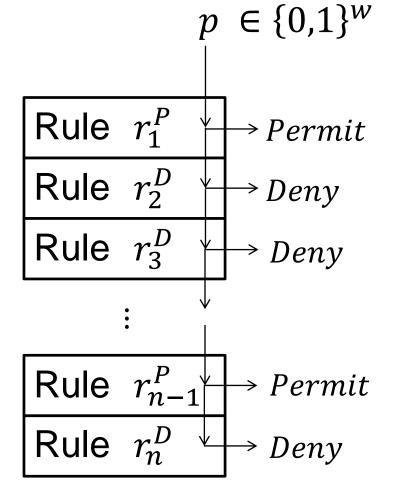
$$r_i^e = b_1 b_2 \cdots b_w$$
 $(b_i \in \{0, 1, *\}, e \in \{P, D\})$
e.g. $w = 4$, $r_2^P = *1 * 0$

Packet Filtering

Take a bit sequence (01010001 ... 101000001),

and return Permit or Deny according to a policy.

Model of Packet Filtering



A packet is compared with each rule in order,

assigned the evaluation type of the first matched rule.

Packet Filtering

e.g.

p = 0111, *D* is assigned to *p*.

R(0111) = D

Filter R	$ E(R, i) _U$	
$r_1^P = * \ 0 * 1$	4	
$r_2^P = 0 \ 0 \ 0 \ 0$	1	
$r_3^P = 0 * 0 0$	1	
$r_4^D = 0 * 1 *$	3	
$r_5^P = *1 * 1$	3	
$r_6^P = * * * 1$	0	
$r_7^D = * * * *$	4	

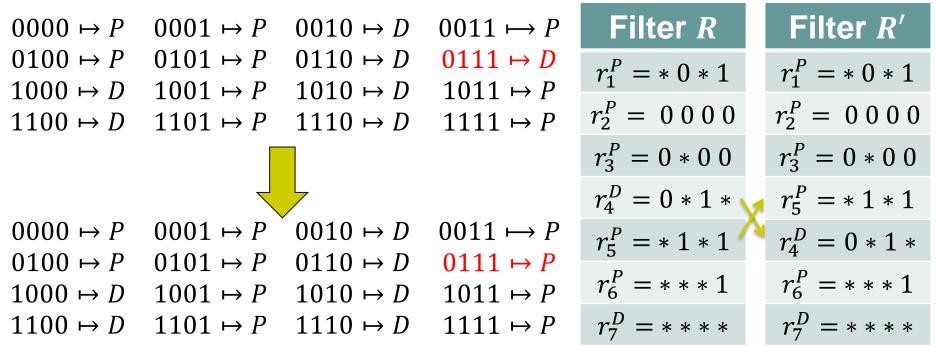
Filtering Policy

$\begin{array}{c} 0000 \mapsto P \\ 0001 \mapsto P \\ 0010 \mapsto D \\ 0011 \mapsto P \\ 0100 \mapsto P \\ 0101 \mapsto P \\ 0110 \mapsto D \\ 0110 \mapsto D \end{array}$	$1000 \mapsto D$ $1001 \mapsto P$ $1010 \mapsto D$ $1011 \mapsto P$ $1100 \mapsto D$ $1101 \mapsto P$ $11101 \mapsto D$
$0110 \mapsto D$ $0111 \mapsto D$	$1110 \mapsto D$ $11111 \mapsto P$

Filter R	$ E(R,i) _U$	
$r_1^P = * \ 0 * 1$	4	
$r_2^P = 0 \ 0 \ 0 \ 0$	1	
$r_3^P = 0 * 0 0$	1	
$r_4^D = 0 * 1 *$	3	
$r_5^P = * 1 * 1$	3	
$r_6^P = * * * 1$	0	
$r_7^D = * * * *$	4	

The table on the right shows the policy on the left.

Policy Violation



Interchanging r_4^D and r_5^P , 0111's action is changed from D to P

Policy violation occurs !

$M(r_i)$

 $M(r_i)$ is a set of packets that can match r_i^e regardless of upper rules.

e.g.

$$M(r_5) = \{ 0101, 0111, \\ 1101, 1111 \}.$$

Filter R	$ E(R, i) _U$	
$r_1^P = * \ 0 * 1$	4	
$r_2^P = 0 \ 0 \ 0 \ 0$	1	
$r_3^P = 0 * 0 0$	1	
$r_4^D = 0 * 1 *$	3	
$r_5^P = *1 * 1$	3	
$r_6^P = * * * 1$	0	
$r_7^D = * * * *$	4	

E(R, i)

E(R, i) is a set of packets that are evaluated by r_i^e .

e.g.
$$E(R,5) = \{0101, 1101, 1111\}.$$

Because 0111 is evaluated r_4^D , E(R, 5) is different from $M(r_5)$.

Filter R	$ E(R, i) _U$	
$r_1^P = * \ 0 * 1$	4	
$r_2^P = 0 \ 0 \ 0 \ 0$	1	
$r_3^P = 0 * 0 0$	1	
$r_4^D = 0 * 1 *$	3	
$r_5^P = *1 * 1$	3	
$r_6^P = * * * 1$	0	
$r_7^D = * * * *$	4	

Packet Arrival Distribution *F*

A packet arrival distribution F is mapping from $\{0,1\}^w$ to \mathbb{N} .

e.g. F(0010) = 0, F(0011) = 3,F(0100) = 10

 $0000 \mapsto 20$

 $1000 \mapsto 0$

 $|P|_F$

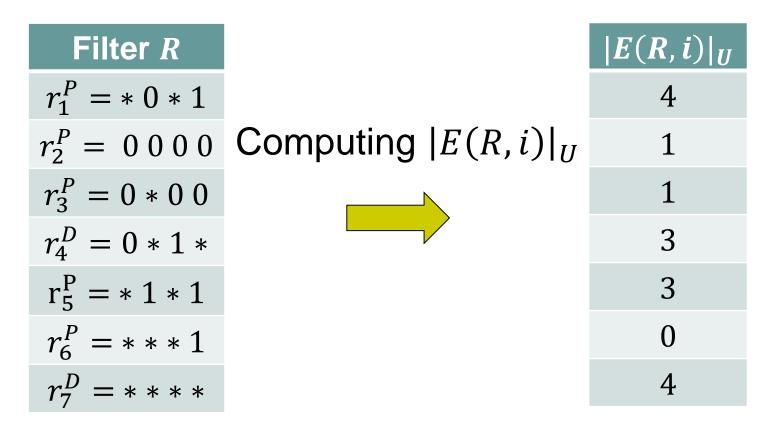
Let *P* be a set of packets and *F* be a packet arrival distribution.

$$|P|_F \equiv \sum_{p \in P} F(p)$$

e.g. $P = \{1110, 1111\}$ $|P|_F = 0 + 7 = 7$

$0000 \mapsto 20$	$1000 \mapsto 0$
$0001 \mapsto 0$	$1001 \mapsto 1$
$0010 \mapsto 0$	$1010 \mapsto 13$
0011 → 3	$1011 \mapsto 0$
$0100 \mapsto 10$	$1100 \mapsto 0$
$0101 \mapsto 2$	$1101 \mapsto 0$
$0110 \mapsto 0$	$1110 \mapsto 0$
$0111 \mapsto 0$	$1111 \mapsto 7$

Computing $|E(R, i)|_U$



Computing $|E(R, n)|_U$ is #*P*-Complete

Filtering Latency $L(R_{\sigma}, F)$

Regard comparison of a packet and some rule as the latency 1,

$$L(R_{\sigma},F) \equiv \sum_{i=1}^{n-1} \sigma(i) |E(R_{\sigma},i)|_F + (n-1)|E(R_{\sigma},n)|$$

where, *R* is a rule list, *F* is a packet arrival distribution and σ is an order of rules.

Filtering Latency $L(R_{\sigma}, F)$

Uniform Distribution U				
$0000 \mapsto 1$	$1000 \mapsto 1$			
$0001 \mapsto 1$	$1001 \mapsto 1$			
$0010 \mapsto 1$	$1010 \mapsto 1$			
$0011 \mapsto 1$	$1011 \mapsto 1$			
$0100 \mapsto 1$	$1100 \mapsto 1$			
$0101 \mapsto 1$	$1101 \mapsto 1$			
$0110 \mapsto 1$	$1110 \mapsto 1$			
$0111 \mapsto 1$	$1111 \mapsto 1$			

Filter R	$ E(R,i) _U$
$r_1^P = * \ 0 * 1$	4
$r_2^P = 0 \ 0 \ 0 \ 0$	1
$r_3^P = 0 * 0 0$	1
$r_4^D = 0 * 1 *$	3
$r_5^P = *1 * 1$	3
$r_6^P = * * * 1$	0
$r_7^D = * * * *$	4

 $L(R, U) = 1 \cdot 4 + 2 \cdot 1 + 3 \cdot 1 + 4 \cdot 3 + 5 \cdot 3 + 6 \cdot 0 + 6 \cdot 4$ = 60

Policy and Reordering rules

Filter R	$ E(R, i) _U$	
$r_1^P = * \ 0 * 1$	4	
$r_2^P = 0 \ 0 \ 0 \ 0$	1	
$r_3^P = 0 * 0 0$	1	
$r_4^D = 0 * 1 *$	3	
$r_5^P = * 1 * 1$	3	
$r_6^P = * * * 1$	0	
$r_7^D = * * * *$	4	
L(R,U)=60		

Filter R_{π}	$ E(R_{\pi},i) _U$	
$r_1^P = * \ 0 * 1$	4	
$r_4^D = 0 * 1 *$	3	
$r_5^P = *1 *1$	3	
$r_3^P = 0 * 0 0$	2	
$r_2^P = 0 \ 0 \ 0 \ 0$	0	
$r_6^P = * * * 1$	0	
$r_7^D = * * * *$	4	
$L(R_{\pi}, U) = 51$		

R and $R_{\pi=(1542367)}$ denote the same policy

Optimal Rule Ordering

Reordering rules can reduce the latency caused by filtering.

Find the order of rules that minimize the filtering latency!

Overlap Relation

If there is a packet p that matches both r_i and r_j , r_i and r_j are said to be **overlapped**.

e.g.

Because, there is packet 0000 that matches r_2^P and r_3^P , r_2^P and r_3^P are overlapped.

Filter R $r_1^P = * 0 * 1$ $r_2^P = 0 0 0 0$ $r_3^P = 0 * 0 0$ $r_4^D = 0 * 1 *$ $r_5^P = * 1 * 1$ $r_6^P = * * 1$

Optimal Rule Ordering (conventional)

Optimal Rule Ordering

Input Rule list *R* and packet arrival distribution *F*

Output Order of rules σ that minimizes $L(R_{\sigma}, F)$ s.t. $\forall i, j, i < j \land O(r_i, r_j) \Rightarrow \sigma(i) < \sigma(j)$

where $O(r_i, r_j)$ denotes that r_i and r_j are overlapped

 $\forall i, j, i < j \land O(r_i, r_j) \Rightarrow \sigma(i) < \sigma(j)$ means that if r_i

and r_j are overlapped, r_j can't be placed ahead of r_j .

Interchangeable condition (1)

Even though $O(r_i, r_j)$, we can place r_j above of r_i .

e.g.

Although r_2^P and r_3^P are overlapped, interchanging r_2^P and r_3^P holds policy.

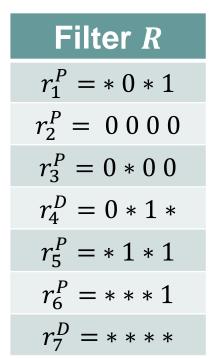
Filter R		Filter R'
$r_1^P = * \ 0 * 1$		$r_1^P = * \ 0 * 1$
$r_2^P = 0 \ 0 \ 0 \ 0$	\checkmark	$r_3^P = 0 * 0 0$
$r_3^P = 0 * 0 0$		$r_2^P = 0 \ 0 \ 0 \ 0$
$r_4^D = 0 * 1 *$		$r_4^D = 0 * 1 *$
$r_5^P = *1*1$		$r_5^P = *1 * 1$
$r_6^P = * * * 1$		$r_6^P = * * * 1$
$r_7^D = * * * *$		$r_7^D = * * * *$

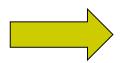
Dependency Relation

If r_i^e and r_j^f are overlapped and e is different from f, r_i^e and r_i^f are said to be **dependent**.

e.g.

Because, r_4^D and r_5^P are overlapped and those actions are different, r_4^D and r_5^P are dependent





Interchanging r_4^D and r_5^P cause policy violation!!

Dependency Relation

Even if r_i^e and r_j^f are overlapped, if r_i^e and r_j^f are not dependent, we can place r_j^f ahead of r_i^e

 r_i^e and r_j^f are dependent $\Leftrightarrow r_j^f$ can't be placed ahead of r_i^e

Left direction \leftarrow is true, but ...

Interchangeable condition (2)

Filter R	$ E(R, i) _U$		Filter R'	$ E(R',i) _U$
$r_1^P = * \ 0 * 1$	4		$r_1^P = * \ 0 * 1$	4
$r_2^P = 0 \ 0 \ 0 \ 0$	1		$r_2^P = 0 \ 0 \ 0 \ 0$	1
$r_3^P = 0 * 0 0$	1		$r_3^P = 0 * 0 0$	1
$r_4^D = 0 * 1 *$	3		$r_4^D = 0 * 1 *$	3
$r_5^P = *1*1$	3		$r_5^P = *1 * 1$	3
$r_6^P = * * * 1$	0	\checkmark	$r_7^D = * * * *$	4
$r_7^D = * * * *$	4		$r_6^P = * * * 1$	0

Even though r_6^P and r_7^D are dependent, because r_6^P evaluate no packet ($E(R, 6) = \phi$), we can exchange r_6^P and r_7^D .

Note that we can't still place r_6^P above of r_4^P 26

Relaxed Optimal Rule Ordering

Relaxed Optimal Rule Ordering

Input Rule list *R* and packet arrival distribution *F*

Output Order of rules σ that minimizes $L(R_{\sigma}, F)$ s.t. holding the filtering policy.

Holding the filtering policy is the most important point

Varying weights of rules

Filter R	$ E(R i) _U$		Filter R'	$ E(R',i) _U$
$r_1^P = * \ 0 * 1$	4		$r_1^P = * \ 0 * 1$	4
$r_2^P = 0 \ 0 \ 0 \ 0$	1		$r_3^P = 0 * 0 0$	2
$r_3^P = 0 * 0 0$	1	\frown	$r_2^P = 0\ 0\ 0\ 0$	0
$r_4^D = 0 * 1 *$	3		$r_4^D = 0 * 1 *$	3
$r_5^P = *1 * 1$	3		$r_5^P = *1 * 1$	3
$r_6^P = * * * 1$	0		$r_6^P = * * * 1$	0
$r_7^D = * * * *$	4		$r_7^D = * * * *$	4

Interchanging overlap rules may cause varying weights of rules as noted above.

Improved Reordering Methods Based on [8]

29

The algorithm [8] ignores the variation of weights (In [8], the weight of rule r_i^e is denoted w_i as a constant.)

Propose an algorithm considering the variation of weights

[8] K. Tanaka, K. Mikawa, and M. Hikin, "A heuristic algorithm for reconstructing a packet filter with dependent rules," IEICE Trans. Commun., vol 96, no. 1, pp. 155-162, Jan 2013

Interchange Adjacent Rules

In the [8], if r_i^e and r_{i+1}^f are interchangeable $w_i < w_{i+1}$ holds, interchange r_i^e and r_{i+1}^f .

Consider the variation of weights

Let r_i^e and r_{i+1}^e are *i*th and *i* + 1th rule respectively and overlapped. If

 $i|E(R,i)|_F + (i+1)|E(R,i+1)|_F$ > $i(|E(R,i)|_F + |E(R,i) \cap M(r_{i+1})|_F) + (i+1)(|E(R,i) \setminus M(r_k)|_F)$ holds, interchange r_i^e and r_{i+1}^e .

Interchange Adjacent Rules

Filter R	$ E(R i) _U$	Filter R'	$ E(R',i) _U$
$r_1^P = * \ 0 * 1$	4	$r_1^P = * \ 0 * 1$	4
$r_2^P = 0 \ 0 \ 0 \ 0$	1	$r_3^P = 0 * 0 0$	2
$r_3^P = 0 * 0 0$	1	$r_2^P = 0\ 0\ 0\ 0$	0

Because $w_2 = 1 < 1 = w_3$ doesn't holds, the [8] doesn't interchange r_2^P and r_3^P .

In contrast to this, proposed method interchange them by considering the variation of weights.

Interchange of Single Rule and Consecutive Rules

Filter R	$ E(R i) _F$		Filter R	$ E(R i) _F$
$r_3^P = 100 *$	4		$r_3^P = 1 \ 0 \ 0 \ *$	4
$r_2^P = 1 * 1 1$	3		$r_1^D = 1 \ 0 \ 0 *$	2
$r_1^D = 1 \ 0 \ 0 *$	2	\mathbf{X}	$r_4^P = * \ 0 * *$	30
$r_4^P = * \ 0 * *$	28		$r_2^P = 1 * 1 1$	1

Let F(1011) = 2.

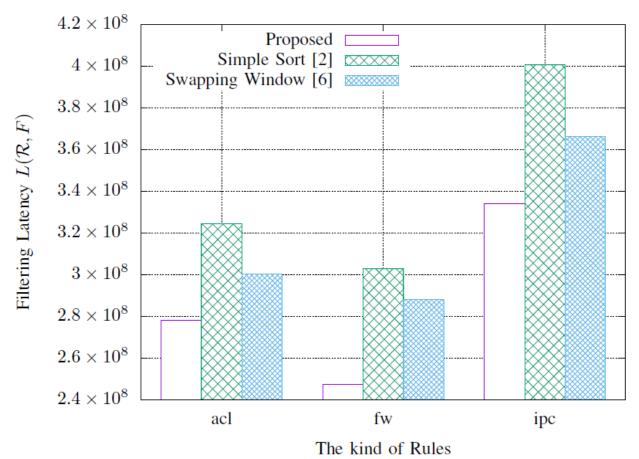
In this case, we also consider the variation of weights.

Experiments

Latency		Acl	fw	ірс
Fixed weight	Method [8]	2.99843 × 10 ⁸	2.60785×10^8	3.46560×10^{8}
varying weight	method [8]	2.94295×10^8	2.60504×10^{8}	3.44709×10^{8}
	proposed	2.78112×10^{8}	2.47181×10^{8}	3.33953 × 10 ⁸

To solve RORO, the variation of weights should be considered

Experiments



34

Proposed method decreases the latency compared with [2] and [6]

[2] E. W. Fulp, "Optimization of network firewall policies using directed acyclic graphs," in In proc, IEEE Internet Management Conf, extended abstract, 2005
[6] R. Mohan A. Yazidi, B. Feng, and B. J. Oommen, "Dynamic ordering of firewall rules using a novel swapping window-based paradigm," in Proceedings of ICCNS '16. NY, ACM, 2016, pp.11-20

Conclusion and Future work

Conclusion

- Introduced Relaxed Optimal Rule Ordering Problem (RORO)
- Proposed a heuristic for RORO

Future Work

• Develop a heuristic for a large rule list

Thank you for listening