
A Heuristic Algorithm for Relaxed

Optimal Rule Ordering Problem

Takashi Harada†, Ken Tanaka† and Kenji Mikawa‡

†Kanagawa University, Japan
‡Niigata University, Japan

1

Research Theme

Acceleration of packet filtering

2

by reordering rules in a rule list

Table of Contents

 Packet Filtering Model

 Optimal Rule Ordering (ORO)

 Relaxed Optimal Rule Ordering (RORO)

 Heuristic algorithm for RORO

 Experiments

 Conclusion and Future Work

3

Packet Filtering

4

Network A Network B

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐴 ∶ 𝐷𝑒𝑛𝑦
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵 ∶ 𝑃𝑒𝑟𝑚𝑖𝑡
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶 ∶ 𝑃𝑒𝑟𝑚𝑖𝑡

⋮
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑍 ∶ 𝐷𝑒𝑛𝑦

Filtering packets according to the policy

Acceleration of Packet Filtering

5

• Using a special hardware, like TCAM

• Using software-based algorithm

• Reordering rules in a rule list

• Reconstructing a rule list

Form of packet and Rule

6

We regard packet as a bit string of length 𝑤.

e.g. 𝑤 = 4, 𝑝 = 0100

We regard condition of rule as a string on {0,1,∗}𝑤.

𝑟𝑖
𝑒 = 𝑏1𝑏2 ⋯𝑏𝑤 (𝑏𝑖 ∈ 0,1,∗ , 𝑒 ∈ { 𝑃, 𝐷 })

e.g. 𝑤 = 4, 𝑟2
𝑃 = ∗ 1 ∗ 0

Packet Filtering

7

Take a bit sequence (01010001 ⋯101000001) ,

and return 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦 according to a policy.

Model of Packet Filtering

8

Rule 𝑟1
𝑃

Rule 𝑟2
𝐷

Rule 𝑟3
𝐷

Rule 𝑟𝑛−1
𝑃

Rule 𝑟𝑛
𝐷

𝑝 ∈ 0,1 𝑤

⋮

𝑃𝑒𝑟𝑚𝑖𝑡

𝑃𝑒𝑟𝑚𝑖𝑡

𝐷𝑒𝑛𝑦

𝐷𝑒𝑛𝑦

𝐷𝑒𝑛𝑦

A packet is compared with

each rule in order,

assigned the evaluation type

of the first matched rule.

Packet Filtering

9

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

e.g.

𝑝 = 0111,
𝐷 is assigned to 𝑝.

𝑅(0111) = 𝐷

Filtering Policy

10

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

0000 ↦ 𝑃
0001 ↦ 𝑃
0010 ↦ 𝐷
0011 ↦ 𝑃
0100 ↦ 𝑃
0101 ↦ 𝑃
0110 ↦ 𝐷
0111 ↦ 𝐷

1000 ↦ 𝐷
1001 ↦ 𝑃
1010 ↦ 𝐷
1011 ↦ 𝑃
1100 ↦ 𝐷
1101 ↦ 𝑃
1110 ↦ 𝐷
1111 ↦ 𝑃

The table on the right shows the policy on the left.

Policy Violation

11

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

0000 ↦ 𝑃
0100 ↦ 𝑃
1000 ↦ 𝐷
1100 ↦ 𝐷

0001 ↦ 𝑃
0101 ↦ 𝑃
1001 ↦ 𝑃
1101 ↦ 𝑃

0010 ↦ 𝐷
0110 ↦ 𝐷
1010 ↦ 𝐷
1110 ↦ 𝐷

0011 ⟼ 𝑃
0111 ↦ 𝐷
1011 ↦ 𝑃
1111 ↦ 𝑃

Filter 𝑹′

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

0000 ↦ 𝑃
0100 ↦ 𝑃
1000 ↦ 𝐷
1100 ↦ 𝐷

0001 ↦ 𝑃
0101 ↦ 𝑃
1001 ↦ 𝑃
1101 ↦ 𝑃

0010 ↦ 𝐷
0110 ↦ 𝐷
1010 ↦ 𝐷
1110 ↦ 𝐷

0011 ⟼ 𝑃
0111 ↦ 𝑃
1011 ↦ 𝑃
1111 ↦ 𝑃

Interchanging 𝑟4
𝐷 and 𝑟5

𝑃, 0111’s action is changed from 𝐷 to 𝑃

Policy violation occurs !

𝑴 𝒓𝒊

12

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝑀 𝑟𝑖 is a set of packets that

can match 𝑟𝑖
𝑒 regardless of

upper rules.

e.g.

𝑀 𝑟5 = { 0101, 0111,
1101, 1111 }.

𝑬(𝑹, 𝒊)

13

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝐸(𝑅, 𝑖) is a set of packets

that are evaluated by 𝑟𝑖
𝑒.

e.g.

𝐸 𝑅, 5 = { 0101, 1101, 1111 }.

Because 0111 is evaluated 𝑟4
𝐷,

𝐸 𝑅, 5 is different from 𝑀 𝑟5 .

Packet Arrival Distribution 𝑭

14

0000 ↦ 20
0001 ↦ 0
0010 ↦ 0
0011 ↦ 3
0100 ↦ 10
0101 ↦ 2
0110 ↦ 0
0111 ↦ 0

1000 ↦ 0
1001 ↦ 1
1010 ↦ 13
1011 ↦ 0
1100 ↦ 0
1101 ↦ 0
1110 ↦ 0
1111 ↦ 7

A packet arrival distribution 𝐹
is mapping from 0,1 𝑤 to ℕ.

e.g.
𝐹 0010 = 0,
𝐹 0011 = 3,
𝐹 0100 = 10

𝑷 𝑭

Let 𝑃 be a set of packets and 𝐹 be a packet arrival

distribution.

𝑃 𝐹 ≡ σ𝑝 ∈𝑃 𝐹(𝑝)

e.g.

𝑃 = 1110, 1111

𝑃 𝐹 = 0 + 7 = 7

15

0000 ↦ 20
0001 ↦ 0
0010 ↦ 0
0011 ↦ 3
0100 ↦ 10
0101 ↦ 2
0110 ↦ 0
0111 ↦ 0

1000 ↦ 0
1001 ↦ 1
1010 ↦ 13
1011 ↦ 0
1100 ↦ 0
1101 ↦ 0
1110 ↦ 0
1111 ↦ 7

Computing 𝑬 𝑹, 𝒊 𝑼

16

|𝑬 𝑹, 𝒊 |𝑼

4

1

1

3

3

0

4

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

r5
P = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

Computing 𝐸 𝑅, 𝑖 𝑈

Computing 𝐸 𝑅, 𝑛 𝑈 is #𝑃-Complete

Filtering Latency 𝑳(𝑹𝝈, 𝑭)

Regard comparison of a packet and some rule as the
latency 1,

𝐿 𝑅𝜎 , 𝐹 ≡

𝑖=1

𝑛−1

𝜎 𝑖 𝐸 𝑅𝜎 , 𝑖 𝐹 + 𝑛 − 1 |𝐸 𝑅𝜎 , 𝑛 |

where, 𝑅 is a rule list, 𝐹 is a packet arrival

distribution and 𝜎 is an order of rules.

17

Filtering Latency 𝑳(𝑹𝝈, 𝑭)

18

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

0000 ↦ 1
0001 ↦ 1
0010 ↦ 1
0011 ↦ 1
0100 ↦ 1
0101 ↦ 1
0110 ↦ 1
0111 ↦ 1

1000 ↦ 1
1001 ↦ 1
1010 ↦ 1
1011 ↦ 1
1100 ↦ 1
1101 ↦ 1
1110 ↦ 1
1111 ↦ 1

𝐿 𝑅, 𝑈 = 1 ⋅ 4 + 2 ∙ 1 + 3 ∙ 1 + 4 ∙ 3 + 5 ∙ 3 + 6 ∙ 0 + 6 ∙ 4
= 60

Uniform Distribution 𝑈

Policy and Reordering rules

19

Filter 𝑹𝝅 |𝑬 𝑹𝝅, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟3
𝑃 = 0 ∗ 0 0 2

𝑟2
𝑃 = 0 0 0 0 0

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝐿 𝑅𝜋 , 𝑈 = 51

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝐿 𝑅, 𝑈 = 60

𝑅 and 𝑅𝜋=(1 5 4 2 3 6 7) denote the same policy

Optimal Rule Ordering

20

Reordering rules can reduce the latency caused by filtering.

Find the order of rules that minimize the filtering latency!

Overlap Relation

21

If there is a packet 𝑝 that matches both 𝑟𝑖
and 𝑟𝑗, 𝑟𝑖 and 𝑟𝑗 are said to be overlapped.

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

e.g.

Because, there is packet 0000 that matches

𝑟2
𝑃 and 𝑟3

𝑃, 𝑟2
𝑃 and 𝑟3

𝑃 are overlapped.

Optimal Rule Ordering

(conventional)

22

Optimal Rule Ordering

Input Rule list 𝑅 and packet arrival distribution 𝐹

Output Order of rules 𝜎 that minimizes 𝐿 𝑅𝜎 , 𝐹

s.t. ∀𝑖, 𝑗, 𝑖 < 𝑗 ∧ 𝑂 𝑟𝑖 , 𝑟𝑗 ⇒ 𝜎 𝑖 < 𝜎(𝑗)

where 𝑂 𝑟𝑖 , 𝑟𝑗 denotes that 𝑟𝑖 and 𝑟𝑗 are overlapped

∀𝑖, 𝑗, 𝑖 < 𝑗 ∧ 𝑂 𝑟𝑖 , 𝑟𝑗 ⇒ 𝜎 𝑖 < 𝜎(𝑗) means that if 𝑟𝑖

and 𝑟𝑗 are overlapped, 𝑟𝑗 can’t be placed ahead of 𝑟𝑗.

Interchangeable condition (1)

23

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

Even though 𝑂(𝑟𝑖 , 𝑟𝑗), we can place 𝑟𝑗 above of 𝑟𝑖.

Filter 𝑹′

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟3
𝑃 = 0 ∗ 0 0

𝑟2
𝑃 = 0 0 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

e.g.

Although 𝑟2
𝑃 and 𝑟3

𝑃 are

overlapped, interchanging 𝑟2
𝑃

and 𝑟3
𝑃 holds policy.

Dependency Relation

24

If 𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are overlapped and 𝑒 is different

from 𝑓, 𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are said to be dependent.

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

e.g.

Because, 𝑟4
𝐷 and 𝑟5

𝑃 are overlapped and those

actions are different, 𝑟4
𝐷 and 𝑟5

𝑃 are dependent

Interchanging 𝑟4
𝐷 and 𝑟5

𝑃 cause policy violation!!

Dependency Relation

25

Even if 𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are overlapped, if 𝑟𝑖

𝑒 and 𝑟𝑗
𝑓

are not dependent,

we can place 𝑟𝑗
𝑓

ahead of 𝑟𝑖
𝑒

𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are dependent ⇔ 𝑟𝑗

𝑓
can’t be placed ahead of 𝑟𝑖

𝑒

?

Left direction ⇐ is true, but …

Interchangeable condition (2)

26

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

Filter 𝑹′ |𝑬 𝑹′, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

Even though 𝑟6
𝑃 and 𝑟7

𝐷 are dependent, because 𝑟6
𝑃 evaluate

no packet (𝐸 𝑅, 6 = 𝜙),we can exchange 𝑟6
𝑃 and 𝑟7

𝐷.

Note that we can’t still place 𝑟6
𝑃 above of 𝑟4

𝑃

Relaxed Optimal Rule Ordering

27

Relaxed Optimal Rule Ordering

Input Rule list 𝑅 and packet arrival distribution 𝐹

Output Order of rules 𝜎 that minimizes 𝐿 𝑅𝜎 , 𝐹
s.t. holding the filtering policy.

Holding the filtering policy is the most important point

Varying weights of rules

28

Filter 𝑹 |𝑬 𝑹 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

Filter 𝑹′ |𝑬 𝑹′, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟3
𝑃 = 0 ∗ 0 0 2

𝑟2
𝑃 = 0 0 0 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

Interchanging overlap rules may cause varying

weights of rules as noted above.

Improved Reordering Methods

Based on [8]

The algorithm [8] ignores the variation of weights

(In [8], the weight of rule 𝑟𝑖
𝑒 is denoted 𝑤𝑖 as a

constant.)

Propose an algorithm considering the variation

of weights

29[8] K. Tanaka, K. Mikawa, and M. Hikin, “A heuristic algorithm for reconstructing a packet filter

with dependent rules,” IEICE Trans. Commun., vol 96, no. 1, pp. 155-162, Jan 2013

Interchange Adjacent Rules

30

In the [8], if 𝑟𝑖
𝑒and 𝑟𝑖+1

𝑓
are interchangeable wi < 𝑤𝑖+1

holds, interchange 𝑟𝑖
𝑒 and 𝑟𝑖+1

𝑓
.

Consider the variation of weights

Let 𝑟𝑖
𝑒 and 𝑟𝑖+1

𝑒 are 𝑖th and 𝑖 + 1th rule respectively and

overlapped. If
𝑖 𝐸 𝑅, 𝑖 𝐹 + 𝑖 + 1 𝐸 𝑅, 𝑖 + 1 𝐹

> 𝑖 𝐸 𝑅, 𝑖 𝐹 + 𝐸 𝑅, 𝑖 ∩ 𝑀 𝑟𝑖+1 𝐹 + (𝑖 + 1)(𝐸 𝑅, 𝑖 ∖ 𝑀 𝑟𝑘 𝐹)

holds, interchange 𝑟𝑖
𝑒 and 𝑟𝑖+1

𝑒 .

Interchange Adjacent Rules

31

Filter 𝑹 |𝑬 𝑹 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

Filter 𝑹′ |𝑬 𝑹′, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟3
𝑃 = 0 ∗ 0 0 2

𝑟2
𝑃 = 0 0 0 0 0

Because 𝑤2 = 1 < 1 = 𝑤3 doesn’t holds, the [8]

doesn’t interchange 𝑟2
𝑃 and 𝑟3

𝑃.

In contrast to this, proposed method interchange

them by considering the variation of weights.

Interchange of Single Rule and

Consecutive Rules

32

Filter 𝑹 |𝑬 𝑹 𝒊 |𝑭

𝑟3
𝑃 = 1 0 0 ∗ 4

𝑟2
𝑃 = 1 ∗ 1 1 3

𝑟1
𝐷 = 1 0 0 ∗ 2

𝑟4
𝑃 = ∗ 0 ∗ ∗ 28

Filter 𝑹 |𝑬 𝑹 𝒊 |𝑭

𝑟3
𝑃 = 1 0 0 ∗ 4

𝑟1
𝐷 = 1 0 0 ∗ 2

𝑟4
𝑃 = ∗ 0 ∗ ∗ 30

𝑟2
𝑃 = 1 ∗ 1 1 1

Let 𝐹 1011 = 2.

In this case, we also consider the variation of weights.

Experiments

33

Latency
Acl fw ipc

Fixed weight Method [8] 2.99843 × 108 2.60785 × 108 3.46560 × 108

varying weight

method [8] 2.94295 × 108 2.60504 × 108 3.44709 × 108

proposed 2.78112 × 108 2.47181 × 108 3.33953 × 108

To solve RORO, the variation of weights should be considered

Experiments

34

Proposed method decreases the latency compared with [2] and [6]

[2] E. W. Fulp, "Optimization of network firewall policies using directed acyclic graphs," in In proc,

IEEE Internet Management Conf, extended abstract, 2005

[6] R. Mohan A. Yazidi, B. Feng, and B. J. Oommen, “Dynamic ordering of firewall rules using a

novel swapping window-based paradigm,” in Proceedings of ICCNS ‘16. NY, ACM, 2016, pp.11-20

Conclusion and Future work

Conclusion

 Introduced Relaxed Optimal Rule Ordering

Problem (RORO)

 Proposed a heuristic for RORO

Future Work

 Develop a heuristic for a large rule list

35

Thank you for listening

36

