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Packet Filtering
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Network A Network B

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐴 ∶ 𝐷𝑒𝑛𝑦
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵 ∶ 𝑃𝑒𝑟𝑚𝑖𝑡
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶 ∶ 𝑃𝑒𝑟𝑚𝑖𝑡

⋮
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑍 ∶ 𝐷𝑒𝑛𝑦

Filtering packets according to the policy



Acceleration of Packet Filtering 
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• Using a special hardware, like TCAM

• Using software-based algorithm

• Reordering rules in a rule list

• Reconstructing a rule list



Form of packet and Rule
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We regard packet as a bit string of length 𝑤. 

e.g.  𝑤 = 4, 𝑝 = 0100

We regard condition of rule as a string on {0,1,∗}𝑤. 

𝑟𝑖
𝑒 = 𝑏1𝑏2 ⋯𝑏𝑤 (𝑏𝑖 ∈ 0,1,∗ , 𝑒 ∈ { 𝑃, 𝐷 } )

e.g.  𝑤 = 4, 𝑟2
𝑃 = ∗ 1 ∗ 0



Packet Filtering
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Take a bit sequence (01010001 ⋯101000001) ,

and return 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦 according to a policy.



Model of Packet Filtering
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Rule 𝑟1
𝑃

Rule 𝑟2
𝐷

Rule 𝑟3
𝐷

Rule 𝑟𝑛−1
𝑃

Rule 𝑟𝑛
𝐷

𝑝 ∈ 0,1 𝑤

⋮

𝑃𝑒𝑟𝑚𝑖𝑡

𝑃𝑒𝑟𝑚𝑖𝑡

𝐷𝑒𝑛𝑦

𝐷𝑒𝑛𝑦

𝐷𝑒𝑛𝑦

A packet is compared with 

each rule in order,

assigned the evaluation type 

of  the first matched rule.



Packet Filtering
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Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

e.g. 

𝑝 = 0111,
𝐷 is assigned to 𝑝.

𝑅(0111) = 𝐷



Filtering Policy
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Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

0000 ↦ 𝑃
0001 ↦ 𝑃
0010 ↦ 𝐷
0011 ↦ 𝑃
0100 ↦ 𝑃
0101 ↦ 𝑃
0110 ↦ 𝐷
0111 ↦ 𝐷

1000 ↦ 𝐷
1001 ↦ 𝑃
1010 ↦ 𝐷
1011 ↦ 𝑃
1100 ↦ 𝐷
1101 ↦ 𝑃
1110 ↦ 𝐷
1111 ↦ 𝑃

The table on the right shows the policy on the left.



Policy Violation
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Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

0000 ↦ 𝑃
0100 ↦ 𝑃
1000 ↦ 𝐷
1100 ↦ 𝐷

0001 ↦ 𝑃
0101 ↦ 𝑃
1001 ↦ 𝑃
1101 ↦ 𝑃

0010 ↦ 𝐷
0110 ↦ 𝐷
1010 ↦ 𝐷
1110 ↦ 𝐷

0011 ⟼ 𝑃
0111 ↦ 𝐷
1011 ↦ 𝑃
1111 ↦ 𝑃

Filter 𝑹′

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

0000 ↦ 𝑃
0100 ↦ 𝑃
1000 ↦ 𝐷
1100 ↦ 𝐷

0001 ↦ 𝑃
0101 ↦ 𝑃
1001 ↦ 𝑃
1101 ↦ 𝑃

0010 ↦ 𝐷
0110 ↦ 𝐷
1010 ↦ 𝐷
1110 ↦ 𝐷

0011 ⟼ 𝑃
0111 ↦ 𝑃
1011 ↦ 𝑃
1111 ↦ 𝑃

Interchanging 𝑟4
𝐷 and 𝑟5

𝑃, 0111’s action is changed from 𝐷 to 𝑃

Policy violation occurs !



𝑴 𝒓𝒊
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Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝑀 𝑟𝑖 is a set of packets that 

can match 𝑟𝑖
𝑒 regardless of 

upper rules.

e.g. 

𝑀 𝑟5 = { 0101, 0111,
1101, 1111 }.



𝑬(𝑹, 𝒊)
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Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝐸(𝑅, 𝑖) is a set of packets 

that are evaluated by 𝑟𝑖
𝑒.

e.g. 

𝐸 𝑅, 5 = { 0101, 1101, 1111 }.

Because 0111 is evaluated 𝑟4
𝐷,

𝐸 𝑅, 5 is different from 𝑀 𝑟5 .



Packet Arrival Distribution 𝑭
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0000 ↦ 20
0001 ↦ 0
0010 ↦ 0
0011 ↦ 3
0100 ↦ 10
0101 ↦ 2
0110 ↦ 0
0111 ↦ 0

1000 ↦ 0
1001 ↦ 1
1010 ↦ 13
1011 ↦ 0
1100 ↦ 0
1101 ↦ 0
1110 ↦ 0
1111 ↦ 7

A packet arrival distribution 𝐹
is mapping from 0,1 𝑤 to ℕ.

e.g.
𝐹 0010 = 0,
𝐹 0011 = 3,
𝐹 0100 = 10



𝑷 𝑭

Let 𝑃 be a set of packets and 𝐹 be a packet arrival 

distribution.

𝑃 𝐹 ≡ σ𝑝 ∈𝑃 𝐹(𝑝)

e.g.

𝑃 = 1110, 1111

𝑃 𝐹 = 0 + 7 = 7
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0000 ↦ 20
0001 ↦ 0
0010 ↦ 0
0011 ↦ 3
0100 ↦ 10
0101 ↦ 2
0110 ↦ 0
0111 ↦ 0

1000 ↦ 0
1001 ↦ 1
1010 ↦ 13
1011 ↦ 0
1100 ↦ 0
1101 ↦ 0
1110 ↦ 0
1111 ↦ 7



Computing 𝑬 𝑹, 𝒊 𝑼
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|𝑬 𝑹, 𝒊 |𝑼

4

1

1

3

3

0

4

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

r5
P = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

Computing 𝐸 𝑅, 𝑖 𝑈

Computing 𝐸 𝑅, 𝑛 𝑈 is #𝑃-Complete



Filtering Latency 𝑳(𝑹𝝈, 𝑭)

Regard comparison of a packet and some rule as the 
latency 1, 

𝐿 𝑅𝜎 , 𝐹 ≡ 

𝑖=1

𝑛−1

𝜎 𝑖 𝐸 𝑅𝜎 , 𝑖 𝐹 + 𝑛 − 1 |𝐸 𝑅𝜎 , 𝑛 |

where, 𝑅 is a rule list, 𝐹 is a packet arrival 

distribution and 𝜎 is an order of rules.
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Filtering Latency 𝑳(𝑹𝝈, 𝑭)
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Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

0000 ↦ 1
0001 ↦ 1
0010 ↦ 1
0011 ↦ 1
0100 ↦ 1
0101 ↦ 1
0110 ↦ 1
0111 ↦ 1

1000 ↦ 1
1001 ↦ 1
1010 ↦ 1
1011 ↦ 1
1100 ↦ 1
1101 ↦ 1
1110 ↦ 1
1111 ↦ 1

𝐿 𝑅, 𝑈 = 1 ⋅ 4 + 2 ∙ 1 + 3 ∙ 1 + 4 ∙ 3 + 5 ∙ 3 + 6 ∙ 0 + 6 ∙ 4
= 60

Uniform Distribution 𝑈



Policy and Reordering rules
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Filter 𝑹𝝅 |𝑬 𝑹𝝅, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟3
𝑃 = 0 ∗ 0 0 2

𝑟2
𝑃 = 0 0 0 0 0

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝐿 𝑅𝜋 , 𝑈 = 51

Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝐿 𝑅, 𝑈 = 60

𝑅 and 𝑅𝜋=(1 5 4 2 3 6 7) denote the same policy



Optimal Rule Ordering
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Reordering rules can reduce the latency caused by filtering.

Find the order of rules that minimize the filtering latency!



Overlap Relation
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If there is a packet 𝑝 that matches both 𝑟𝑖
and 𝑟𝑗, 𝑟𝑖 and 𝑟𝑗 are said to be overlapped.

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

e.g.

Because, there is packet 0000 that matches

𝑟2
𝑃 and 𝑟3

𝑃, 𝑟2
𝑃 and 𝑟3

𝑃 are overlapped.



Optimal Rule Ordering 

(conventional)

22

Optimal Rule Ordering

Input Rule list 𝑅 and packet arrival distribution 𝐹

Output Order of rules 𝜎 that minimizes 𝐿 𝑅𝜎 , 𝐹

s.t. ∀𝑖, 𝑗, 𝑖 < 𝑗 ∧ 𝑂 𝑟𝑖 , 𝑟𝑗 ⇒ 𝜎 𝑖 < 𝜎(𝑗)

where 𝑂 𝑟𝑖 , 𝑟𝑗 denotes that  𝑟𝑖 and 𝑟𝑗 are overlapped

∀𝑖, 𝑗, 𝑖 < 𝑗 ∧ 𝑂 𝑟𝑖 , 𝑟𝑗 ⇒ 𝜎 𝑖 < 𝜎(𝑗) means that if 𝑟𝑖

and 𝑟𝑗 are overlapped, 𝑟𝑗 can’t be placed ahead of 𝑟𝑗.



Interchangeable condition (1)
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Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

Even though 𝑂(𝑟𝑖 , 𝑟𝑗), we can place 𝑟𝑗 above of 𝑟𝑖.

Filter 𝑹′

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟3
𝑃 = 0 ∗ 0 0

𝑟2
𝑃 = 0 0 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

e.g. 

Although 𝑟2
𝑃 and 𝑟3

𝑃 are 

overlapped, interchanging 𝑟2
𝑃

and 𝑟3
𝑃 holds policy.



Dependency Relation
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If 𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are overlapped and 𝑒 is different

from 𝑓, 𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are said to be dependent.

Filter 𝑹

𝑟1
𝑃 = ∗ 0 ∗ 1

𝑟2
𝑃 = 0 0 0 0

𝑟3
𝑃 = 0 ∗ 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗

𝑟5
𝑃 = ∗ 1 ∗ 1

𝑟6
𝑃 = ∗ ∗ ∗ 1

𝑟7
𝐷 = ∗ ∗ ∗ ∗

e.g.

Because, 𝑟4
𝐷 and 𝑟5

𝑃 are overlapped and those

actions are different, 𝑟4
𝐷 and 𝑟5

𝑃 are dependent

Interchanging 𝑟4
𝐷 and 𝑟5

𝑃 cause policy violation!!



Dependency Relation
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Even if 𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are overlapped, if 𝑟𝑖

𝑒 and 𝑟𝑗
𝑓

are not dependent,

we can place 𝑟𝑗
𝑓

ahead of 𝑟𝑖
𝑒

𝑟𝑖
𝑒 and 𝑟𝑗

𝑓
are dependent ⇔ 𝑟𝑗

𝑓
can’t be placed ahead of 𝑟𝑖

𝑒

?

Left direction ⇐ is true, but …



Interchangeable condition (2)
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Filter 𝑹 |𝑬 𝑹, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

Filter 𝑹′ |𝑬 𝑹′, 𝒊 |𝑼
𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

Even though 𝑟6
𝑃 and 𝑟7

𝐷 are dependent, because 𝑟6
𝑃 evaluate 

no packet (𝐸 𝑅, 6 = 𝜙),we can exchange 𝑟6
𝑃 and 𝑟7

𝐷.

Note that we can’t still place 𝑟6
𝑃 above of 𝑟4

𝑃



Relaxed Optimal Rule Ordering
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Relaxed Optimal Rule Ordering

Input Rule list 𝑅 and packet arrival distribution 𝐹

Output Order of rules 𝜎 that minimizes 𝐿 𝑅𝜎 , 𝐹
s.t. holding the filtering policy.

Holding the filtering policy is the most important point



Varying weights of rules
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Filter 𝑹 |𝑬 𝑹 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

Filter 𝑹′ |𝑬 𝑹′, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟3
𝑃 = 0 ∗ 0 0 2

𝑟2
𝑃 = 0 0 0 0 0

𝑟4
𝐷 = 0 ∗ 1 ∗ 3

𝑟5
𝑃 = ∗ 1 ∗ 1 3

𝑟6
𝑃 = ∗ ∗ ∗ 1 0

𝑟7
𝐷 = ∗ ∗ ∗ ∗ 4

Interchanging overlap rules may cause varying 

weights of rules as noted above.



Improved Reordering Methods

Based on [8]

The algorithm [8] ignores the variation of weights

(In [8], the weight of rule 𝑟𝑖
𝑒 is denoted 𝑤𝑖 as a 

constant.)

Propose an algorithm considering the variation 

of weights

29[8] K. Tanaka, K. Mikawa, and M. Hikin, “A heuristic algorithm for reconstructing a packet filter 

with dependent rules,” IEICE Trans. Commun., vol 96, no. 1, pp. 155-162, Jan 2013



Interchange Adjacent Rules

30

In the [8], if 𝑟𝑖
𝑒and 𝑟𝑖+1

𝑓
are interchangeable wi < 𝑤𝑖+1

holds, interchange 𝑟𝑖
𝑒 and 𝑟𝑖+1

𝑓
.

Consider the variation of weights

Let 𝑟𝑖
𝑒 and 𝑟𝑖+1

𝑒 are 𝑖th and 𝑖 + 1th rule respectively and 

overlapped. If
𝑖 𝐸 𝑅, 𝑖 𝐹 + 𝑖 + 1 𝐸 𝑅, 𝑖 + 1 𝐹

> 𝑖 𝐸 𝑅, 𝑖 𝐹 + 𝐸 𝑅, 𝑖 ∩ 𝑀 𝑟𝑖+1 𝐹 + (𝑖 + 1)( 𝐸 𝑅, 𝑖 ∖ 𝑀 𝑟𝑘 𝐹)

holds, interchange 𝑟𝑖
𝑒 and 𝑟𝑖+1

𝑒 .



Interchange Adjacent Rules
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Filter 𝑹 |𝑬 𝑹 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟2
𝑃 = 0 0 0 0 1

𝑟3
𝑃 = 0 ∗ 0 0 1

Filter 𝑹′ |𝑬 𝑹′, 𝒊 |𝑼

𝑟1
𝑃 = ∗ 0 ∗ 1 4

𝑟3
𝑃 = 0 ∗ 0 0 2

𝑟2
𝑃 = 0 0 0 0 0

Because 𝑤2 = 1 < 1 = 𝑤3 doesn’t holds, the [8]

doesn’t interchange 𝑟2
𝑃 and 𝑟3

𝑃.

In contrast to this, proposed method interchange

them by considering the variation of weights.



Interchange of Single Rule and 

Consecutive Rules
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Filter 𝑹 |𝑬 𝑹 𝒊 |𝑭

𝑟3
𝑃 = 1 0 0 ∗ 4

𝑟2
𝑃 = 1 ∗ 1 1 3

𝑟1
𝐷 = 1 0 0 ∗ 2

𝑟4
𝑃 = ∗ 0 ∗ ∗ 28

Filter 𝑹 |𝑬 𝑹 𝒊 |𝑭

𝑟3
𝑃 = 1 0 0 ∗ 4

𝑟1
𝐷 = 1 0 0 ∗ 2

𝑟4
𝑃 = ∗ 0 ∗ ∗ 30

𝑟2
𝑃 = 1 ∗ 1 1 1

Let 𝐹 1011 = 2.

In this case, we also consider the variation of weights.



Experiments
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Latency
Acl fw ipc

Fixed weight Method [8] 2.99843 × 108 2.60785 × 108 3.46560 × 108

varying weight

method [8] 2.94295 × 108 2.60504 × 108 3.44709 × 108

proposed 2.78112 × 108 2.47181 × 108 3.33953 × 108

To solve RORO, the variation of weights should be considered



Experiments
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Proposed method decreases the latency compared with [2] and [6]

[2] E. W. Fulp, "Optimization of network firewall policies using directed acyclic graphs," in In proc, 

IEEE Internet Management Conf, extended abstract, 2005

[6] R. Mohan A. Yazidi, B. Feng, and B. J. Oommen, “Dynamic ordering of firewall rules using a 

novel swapping window-based paradigm,” in Proceedings of ICCNS ‘16. NY, ACM, 2016, pp.11-20



Conclusion and Future work

Conclusion

 Introduced Relaxed Optimal Rule Ordering 

Problem (RORO)

 Proposed a heuristic for RORO

Future Work

 Develop a heuristic for a large rule list 
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Thank you for listening
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